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A certain analog of the Liapunov second method is constructed for dynamic sys- 

tems with cylindrical phase space. The known results obtained by it for second 
order dynamic systems are extended to systems with cylindrical phase space of 
arbitrary dimensions. The derived theorems are used for analyzing the operation 
of a system of two synchronous machines and for investigating the automatic phase 
frequency as a “whole”. 

The working modes of systems of automatic phase frequency control (APFC) are usu- 
ally such that the phase difference 6 (1) between the reference generator that is being 
synchronized is a bounded function of time t E (0, + m). It is often possible to establish 
on the basis of bcundedness of d (t) that for t - + 03 there exists a finite limit of a (r) 
for autononmous APFC systems [l, 21. The presence of such limit means that the con- 
sidered working mode of the APFC is one of capture [l]. Similar statements are also va- 
lid for working modes of synchronous motors,except that then the phase difference bet- 
ween the rotating magnetic field and the rotor is represented by function o (t) [3- 61. 

A certain analog of the Liapunov second method is derived below, which makes it pos- 
sible to obtain effective sufficient conditions of boundedness or unboundedness for function 
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CJ (t).The problem of boundedness of function 6 (t) is reduced by that method to a simul- 
taneous construction of some function of the Liapunov kind and to resolving the question 
of boundedness of all solutions of some second order differential equations of the form 

8” + R (e) 0’ + f ((3) = 0 (0.1) 

where R (0) and f (6) are some 2n-periodic functions . We note in connection with 
this that Eq. (0.1) has been thoroughly investigated for many important classes of func- 
tions R (0) and f (6) , particularly with respect to the boundedness of solutions of Eq. 

(0.1) for R (0) f const. Numerous results of investigations of Eq. (0. 1) and a list of 
works dealing with this subject are given in the monographs [l, 71. 

1. We introduce in the analysis continuous functions f (a), u (o) and 8 (o) that 
are specified for o E (- 00, + oo) , continuous functions W (t) and 9 (t) deter- 
mined for t > 0, and the continuously differentiable function CT (t). In what follows 
we assume that the inequalities u (a) > 0 and v (o) > 0 are satisfied for all o . 

We further assume that function f (a) satisfies condition A, if it is continuously dif- 
ferentiable, 2n-periodic, has zeros, and if the inequality f’ (o) # 0 holds for any o 
that satisfies the condition f (o) = 0. 

Theorem 1. Let the 291. -periodic functions u (CT) and u (a) be continuously dif- 
ferentiable, function f (a) satisfies condition A, and let the following requirements be 

also satisfied : 
1) all solutions 8 (t) of the second order differential equation 

0” + al/u(e) 2) (0)6. + f (e) = 0 

are bounded in the interval (0, i-0); 
2) the inequality W (t) > 0 is satisfied for all t > 0 for which f (o (t)) = 0 

and f’ (u (t)) < 0, and 
3) function t 

w v> + J F-54 (6 (4) w 6) + ZJ (0 ( Q) (a’ w + f (6 (TN Q’ WI fh 
0 

is a nonincreasing function of t. Function o (t) is then bounded in the interval (O,.+m). 

p r o of . It is shown in c] that when Condition (1) of the theorem is satisfied for any 
integral k, there exists a differentiable function FJ, (0) that satisfies the following re- 

lationships : 
J’k (0) Fk’ (0) + 2lfu (a) 2, (0) f’k (0) + f (~1 = 0 (1.1) 

vu E (-00, +m) 

FI, (00 - 2kcn) = 0, lim Fk (G)” = 00, Fk (6) = Fo (0 f 2kn) 
o-+00 

where o, is some zero of function f (u) in the interval [0, 2~3~1, and f’ (us) < 0. Let 

us now examine function 

V, (t) = W(t) - l/s Fk (u (t))” 

From the first of equalities (1.1) we obtain 

v (0’)s + uFk= + FkFp’a’ + fa’ > uFb2 - [4v]-' [f + F&c’12 = 

[- 4u]-1 [F:&' + 2 I/uv Fk + f] [FkF; - 2 I/= FI, + fl = 0 

where u, u, f and Fk axe functions of u (t) . This and Condition (3) of the theorem 
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imply that function t 

vk (t) -t 2 s u (0 @)) vk @) & (1.2) 

is also a nonincreasing function of t. Bit then it follows from the inequality VR (0) < 
0 that Vk (t) < 0 for all t > 0 . 

In fact, if the opposite, i. e. the existence of a number tl > 0 for which vk (tl) > 0, 
is assumed, then, owing to the continuity of fUnCtiOn Vk (t) and condition vk (0) < 0 , 
we obtain that for t E (ts, h) there exists a number ta E [O, tl) such that Vk (ts) = 0 

and VI, (t) > 0 . But by virtue of the no-growth of function (1.2) the inequality 
t, 

is satisfied. Hence vk (k) < vk (t.J = 0, which contradicts the assumption that vk(tr) > 
0. This contradiction proves that the estimate VI, (0) < 0 follows from the inequality 

VI, (t) < 0 for all r > 0. 
It follows from the last two equations in (1.1) that the inequalities 

Vh (0) < O, v-k co) < 0, 1 (J (0) - (Jo 1 < 2JtlX (L3) 

are satisfied for reasonably high values of k . 
Let us now take k such that inequalities (1.3) are satisfied. But then, as was shown 

above, 
vh (t> < 0, v_, (t) < 0, Vt > 0 (1.4) 

Let us prove that 
1 0 (t) - 0, 1 < 2kn, Vt > 0 (1.5) 

Assuming the opposite, i.e. that there exists a number ti > 0 for which inequality 
(1.5) is not satisfied, then from the continuitv of function IS (t) we obtain that there 
exists a number tz E IO, tl), for which 1 u (tJ - CT,, 1 = 2kn. But then f (a (tJ) = 

0, f’ (0 (tz)) < 0’ and either Fk ((3 (tz)) = 0 or F_k (a (ts)) = 0. It follows from 
this and inequalities (1.4) that W (tz) < 0. This estimate and the relationships 

f (a (ts)) = 0 and f’ (o (tz>) < 0 contradict Condition (2) of the theorem, This 
proves the validity of (1.5), and means that function u (t) is bounded in the interval 

((A+ oc)* 
Theorem 2. Let us assume the existence of a continuously differentiable function 

F (a) for which the following conditions are satisfied. 

1) F (o)>o, VGS t--w, + =J) and 
2) F (a) F’ (u) + f2v (u) u (a) F (0) + f (0) = 0, Ve E (- CG, + co) 

Let also 

3) W (t) + v (u O))(u’ (t))” > 0, v-t>,0 
4) the inequality 9 (t> < f (o 0)) is satisfied for all t > 0 for which 6’ (t) > 0 ; 
5) function 

w (t) + j 12u (o @)> w (7) - $ (r) o’ WI dr 
0 

is a nonincreasing function of t , and 

6) the inequalities U' (0) > 0 and 2W (0) < -F ((I (0)) 2 are satisfied. 
Then the inequality 

CJ’ (t) > F (o (t)Yl/2~ (o (0) (1.6) 
is satisfied for all t > 0 . 
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P r o of , Let us consider function 

V (t) = M’ (t) + l/SF (a MI” 

Condition (6) of the theorem implies that V (0) < 0. Let us further mume that 
V (t) < 0 for t E [O, T).Then 

w (t) + v (cc)” < -V,F2 + 3 ((J’)2, 1E io, Tl 

and according to Condition (3) of the theorem P < 2~ (u’)~. This and Condition (6) 
for t E IO, 2’1 yield the estimate (1.6). But then from Condition (4) we obtain the 

(1.7) 

where 6 (t) is some continuous positive function. Then for t E 10, T] from Condition 
(2) and estimate (1.6) we obtain the relati~ip 

uF2 + If + FF’I d < tv’%l-1 F [FF’ + jf2yuF + f] = 0 

This with inequality (1.7) and Condition (5) of the theorem implies that 

is a nonincreasing function of t in the interval 10, T]. 
Let us now assume that V (2’) = 0 and select the interval (T,, 2’) so small that 

for t E (TX, T) 
6 (t) > 2u ((J b)) I V b) I (1.9) 

Since function (1.8) does not increase in [o, 2’1, the inequality 

v(T)-V(0+ ~12u(o(r))V(~)+S(r)ldz<O 

is valid. This, with condition (1. 9)‘shows that for t E ( TI, T) we have V(T)< V (t) . 
However the assumption that V (T) = 0 implies that V (r) > 0 for t E (TX, T). 
This contradicts the previous assumption that for t E 10, T) we have V (t} < 0 . 
The validity of inequality V (T) < 0 is thus proved. Hence for all t > 0 we have 
V (t) < 0 and, as previously shown, the estimate (1.6) holds for all t > 0. 

2, The working of a system of two synchronous machines with stator windings of zero 
active resistance and a purely reactive quadruple connecting them is defined by equations 
of the form [6] 

da 
dt= i, -$ = - a& +- 2 [a& sin 6o -- (2.11 

(a5 -I- G) (a, -l- is) sin (0 + a011 

u2dt ai1 + a4 cos (a: + ao) 2 = u4 (as Jr i.J E sin (a -t_ Go) - a,il 

Qs& @@3s(a+a,)$= a4 (as + ix) E sin (a + 50) - @A 

on the assumption that the damping moments of rotors of both machines are proportional 
to slip and to their moments of inertia, In these equations a1, a2, . . . , a9 are some 
positive constants and the number (TV E [0, V2c.l. We further assume that a& > 
a,2. Note that the last inequality is always satisfied in the case of systems with a non- 
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branching transmission [S]. 

Let us consider some nontrivial solution o (t), % (t), 4 (t) and is (t) of system (2.1) 
by applying to it Theorem 1. For this we define functions W (t) and f (a) as follows: 

W (t) = Vaa,% (0” + V2aeil (t)” + ‘/,a& (t)” + 

a4 cos (0 0) + a,) il 0) i, 0) 

f (4 = a,ap, [sin (a + ao) - sin a,1 

The inequality asas > ads and the nontriviality of the considered solution directly 

imply that Condition (2) of the theorem is satisfied. 
It will be readily seen that 

w’ (t) = -a7 (il (t))” - a, (i, (W - f (o (Q) % 0) - a,cQl% (V 

Hence, if the numbers h > 0 and e > 0 satisfy the relationships 

a7 -_a, > 0, a, - kc3 > 0 
a, (a, - A) > 8, (a, - JJ$J@* - w > haada 

(2.2) 

the inequality 
w’ (t) + 21LW (t) + f (CJ WE 0) + 8% (0” < 0 

is also satisfied and, consequently, Condition (3) of Theorem 1, where U (U) = h and 
V(U) E e , is valid. Thus, if positive numbers h and 8 such that inequalities (2.2) are 
satisfied and all solutions of the second order equation 

8” + 2JfiXW+ cc,a,a, [sin (0 + Us) - sin UJ = 0 (2.3) 

are bounded in the interval (0, + 00) can be found, then all conditions of Theorem 1 

are satisfied, and consequently u (t) is bounded in the interval (0, +oo). 
Setting 

h 
asa8 + a8a7 - V(asa8 - a3cW + 4a7a3aba 

0= 
2 (a2a3 - ah2) 

E=ug(al-a), r= ho 6% - ho), 2ho < a1 

0.25i$, 2ho>% 

and using the Bohm-Hayes theorem fl- lo], we finally obtain that when 

(sin:)‘<& (2.4) 

then function u (t) is bounded in the interval (0, + co). 
Using the Liapunov type function derived in [S] it can be readily shown that system 

(2.1) ismonostable [11,12] and that functions % (t), 4 (t) and is (t) are bounded in the 
interval (0, -l- 00). Hence, if inequality (2.4) is satisfied, any solution of system (2.1) 
tends for t+ f co to a certain equilibrium state and, consequently, either a dynamic 
or a resulting stability obtains for the considered power system under any operational 
conditions. 

8. Dynamics of a typical autonomous system of AFFC are defined by equations of 
the form 

z’ = Ax + bcp (a), cf = c*x + pep (a) (3.1) 
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where A is the Hurwitz constant of an ( n X n )-matrix, b and c are constant n-vec- 

tars, p is a number, and cp (a) is a 2n-periodic function. 
We introduce in the analysis function x (p) = c* (A - PI)-’ b, where p & a corn- 

plex number, 
Theorem 3. Let us assume that function x (,D) is nondegenerate [13] and that 

there exists numbers e > 0, ?L > 0 and p such that the following conditions are satis- 
fied : 

1) function cp (0) (1 + pep’ (a)) satisfies condition A and the inequality 1 + 
ircP’ (0) # 0 holds for all G E (- 00, + 00) ; 

2) ph + Re x(io - Aa) - p - e 1 x (io - h) - p 1 2 > 0, 
vo>o 

3) matrix A f kI is a Hurwitz matrix, and 
4) all solutions 8 (t) of the second order equation 

8” + aJaa3* + cp (@(I + pc#' (0)) = 0 

are bounded in the interval (0, + 00). 
Then any solution of system (3.1) is bounded in the interval (0, $- m>. 
P roof . It follows from Condition (2) of Theorem 3 by the Iakubovich-Kalman lem- 

ma [13] that there exists such constant ( n x n )-matrix H = H* such that for all z E 
Rn and E E (- 00, -k m) the inequality 

2x*H [(A + kZ) z + b[] - yhE2 + 4 (c*x + pE) + E (c*x + Pt)s < 0 (3.2) 

is satisfied. For E = 0 inequality (3.2) assumes the form 

2x*H (A + hZ) I < - E (c*+ 

which by Lemma 1 [14] together with the nondegeneracy of x (p) and the Hurwitz pro- 

perties of matrix A + hZ yields the inequality H > 0. 
We introduce in the analysis functions 

W (t) = z (t)* Hx (t) - 1/2p~(p (a (t))2 

f (a) = cp (0) (i + pL(p’ (a)) 

where z (t) and 6 (t) are some nontrivial solutions of system (3.1). It follows imme- 
diately from the positive definiteness of matrix H, the nontriviality of the considered 
solution of system (3. l), and from the inequality 1 + p’p’ (a) # 0 that Condition (2) of 

Theorem 1 is satisfied. 
The inequality (3.2) yields the estimate 

W’ (t) + 2hW (t) + E (6 (t))Z_t f (0 (2)) 6’ (t) e 0, vt >, 0 

Thus for u (a) z h and v (a) E F Condition (3) of Theorem 1 is satisfied and Condition 

(4) of Theorem 3 coincides with Condition (1) of Theorem 1. 
Since all conditions of Theorem 1 are satisfied, the solution 6 (L) of system (3.1) is 

bounded in the interval (0, + m). Boundedness of solution x (t) follows from the Hur- 
witz properties of matrix A and from the boundedness of function cp (0). 

4, If the transfer function of the low-pass filter is a regular fractional-rational func- 
tion, and some perturbation is preeent at its input,.the equations of a typical system of 

APFC are of the form 



The second Liapunov mettnd Ln the ti,eory of phase synchronization 221 

2 = Ax + b [cp (a) + g (t)], (J’ = c*z (4.1) 

where A’ is a constant ( n x n )-matrix, b and c are constant n-vectors, and rp (o) 
and g (t) are continuous functions, Function cp (0) is Zrt-periodic. We also assume that 

Theorem 4. Let function x (p) = c* (.4 - pI)-‘b be nondegenerate, c*b<O, 
and let there exist a number h > 0 such that the following conditions are satisfied: 

1) Re x (io -V<O, vo>oo; 
2) fim o2 Re 2 (io - A) < 0 ; 

CO-CO 

3) matrix A -l- ti has one positive eigenvalue and (n - 1) eigenvalues with 
negative real parts, and 

4) the second order equation 

has a solution 8 (t) that is unbo~ded in the interval (0, 4 co) . Then system (4.1) 
has an unbounded solution in the interval (0, -f- oo) 

Proof . It follows from Conditions (l)-(3) of Theorem 4 and the Iakubovich-Kalman 
lemma that there exists a number 6 > 0 and a constant ( nxn )-matrix H = H* with 
one negative and (n - 1) positive eigenvalues such that for all B E Rn and 4 E; (- co, 

+ w) 2x*lS [(A + hl) 5 + be1 -c*ze < - s (C%)’ 

It follows from inequality (4.2) that 2H6 = c. Hence 

(4.2) 

det (H---G) =ddetHdet (2-G) =detEI (1-G) =O 

This relationship and the fact that H has one and only one negative eigenvalue and 
det H # 0 yields the ine~ality Il- (~c*~)-~cc* b 0. From which it immedia~ly fol- 
lows that Condition (3) of Theorem 2 is satisfied, if W (t) = z (t)*Hz (t), a (5) 3 
- Gk+F, and 5 (r) is some solution of system (4.1). 

Let us now assume that f (01 = rp (o), $ (t) = IJJ (oft)) - 66 (t) + g(t), and o (t) issome 
solution of system (4.1). Then from inequality (4.2) we obtain 

W’ (t) + 2hW (t) G 9 (r) 0’ (t), ‘bTt>o 

from which it follows that for u (a) EE h Condition (5) of Theorem 2 is satisfied. The 
presence of function P (5) in Conditions (1) and (2) of Theorem 2 follows from Condi- 
tion (4) of Theorem 4 [7]. 

Hence, if the inequalities 

c*z (0) > 0, 5 (@*Hz (0) < --r/z F (a (0))s (4.3) 

are satisfied for solution 3 (t) and 6 (r) , that solution is unbounded in the interval (0, 
+ co). It is clear from the conditions for the spectrum of matrix H that there exists 
vector z (0) and number a (0) that satisfy inequalities (4.3). 
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